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Abstract

In this paper, consider a semiparametric regression model
.- xT . . ;
yi=X p+gt)+e,1<i<n,
where the error {g;, F;, 1 <i < n} is a martingale difference sequence with
o2 = Var(e;|F;_1). We obtain the wavelet estimator of error variance o2

Under general conditions, we investigate asymptotic normality of 6%, and the

asymptotic chi-square distribution of the quadratic forms in ﬁn
1. Introduction

Consider a semiparametric regression model

y; = XIB+g(t;)+e,1<i<n, (1.1)
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where y; is real-valued relating to the observation at t;, is a d-
dimensional unknown parameter, X = (X;.), , is a random carrier
matrix. g(¢)(¢ € [0, 1]) denotes the nonparametric signal, {;} is a
deterministic sequence in interval [0,1], and {g;, F;,i<n} is a

martingale difference sequence.
Following Speckman [20], denote

Xip = fr(t;)+ Mg, 1<i<n, 1< <d, (1.2)

where f,.() is a function in interval [0, 1], {n;, i > 1} is a stochastic

sequence with m; = (n;;, -, n;¢ ) 1.1.d., and
Eﬁi =0, Var(ﬁi ) =V, (13)

where V = (V;;)(j =1,2,--,d) is a positive definite matrix with d-

order. Moreover, {n;.} and {¢; } are independent.

Since the semiparametric regression model contains linear
components and a nonparmetric component, it is more flexible than the
usual standard linear models and attractive in some applications. The
model was first introduced by Engle et al. [8] and has been extensively
studied. For when the errors are independent and identically distributed
random variables, Chen [5], Speckman [20], Chen and Shiah [6], Donald
and Dewey [7], Hamilton and Truong [9], Bianco and Boente [2], Shi and
Teng [19], Qian and Cai [16], Qian et al. [17] and Chai and Xu [3] used
various estimation methods (the kernel method, spline method, series
estimation, local linear estimation, two-stage estimation, robust
estimation and wavelet estimation) to obtain some estimators of the
unknown quantities and discussed the asymptotic properties of these
estimators.

However, the independence assumption for the errors is not always
appropriate in applications, especially for sequentially collected economic
data, which often exhibit evident dependence in the errors. Recently, the
semiparametric regression model with serially correlated errors has

attracted increasing attention from statisticians. One case of considerable
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interest is the model with martingale difference errors. Chen and Cui [4]
given an example to show the application of the semiparametric model
with martingale difference errors. Under martingale difference errors, Li
and Liu [15] showed that the (weighted) least squares estimators of
parameters were strongly consistent and asymptotic normality. Yan et
al. [22] studied consistency of near neighbor estimators. Chen and Cui
[4] consider the application of the empirical likelihood method to a
partially linear model with martingale difference errors, and shown that
the empirical log-likelihood ratio at the true parameter converged to the
standard Chi-square distribution. Hu and Hu [10] investigated strong
consistency in Model (1)-(3) by the wavelet method. Li and Hu [14]
consider the asymptotic normality of the wavelet estimators. Hu [11]
studied the semiparametric model with martingale difference linear time
series errors, and obtained the r-th mean consistency and completely

consistency for the estimators.

In this paper, using the wavelet method, the semiparametric

regression model is discussed while the error {g;} is a martingale

difference sequence. The organization of this paper is as follows: The

wavelet estimator of error variance is given in Section 2. Under general

conditions, the asymptotic distributions of 6% and the asymptotic Chi-

square distribution of the quadratic forms in ﬁn are obtained in Section

3. The main proofs are presented in Section 4.
2. Estimation Method

Suppose that there exists a scaling function ¢(x) in the Schwartz

space S; and a multiresolution analysis {V,, } in the concomitant Hilbert

space L2(R), with its reproducing kernel E, (t, s) given by
E,(t, s) = 2" Ey(2™t, 2™s) = 2mz¢(2mt - R)p(2™s - k).
kez

Let A; =[s;_;, s;] denote intervals that partition [0, 1] with ¢; € A; and

1 < i < n. The estimate method will be introduced as the following.
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Firstly, suppose that B is known, we define estimator of g(-) by
n
A N T
d0(t) = &0t ) = (i = XTP)|  Enlt, s)ds;
; A
1=1
In succession, we define wavelet estimator [§n by minimizing
n
T A 2
Z(yi - Xi -8t B));
i=1

Finally, we define linear wavelet estimator of g(-) by
A~ n A
&0) = &olt. B)= D0~ XTBo)| | Bt s
i=1 A

Let X = (X3),.00 Y = (1, 9)', S = (Sy) ..o Sij = J.A.Em (;, s)ds,
J
X=(1I-9XY=(-8).
Then we obtain that
By = (X"X)'X"Y, &, = S(Y - XB),
where &, = (&(t;), -+, 8(t,))Y is an estimator of vector

g =(g(t), -, g(t,))’. Thus the wavelet estimator of the error variance

is defined by

n n
. 1 A 1 Th A 2
52 =;§ &7 :;_E (v = Xi B - 8(&)),

(..
Il
—
~
Il
—

A TA A
where &; = y; - Xi B, - &(t).
To obtain our results, the following four conditions are sufficient.

(A7) g(), f-() € H* (Sobolev space, see Chai and Xu [3]), for some
a>1/2,1<r<d
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(Ag) g() and f,.(-) are Lipschitz functions of order y >1/4,1<r
<d;

(As) ¢() belongs to S;, which is a Schwartz space for [ > a. ¢ is a
Lipschitz function of order 1 and have compact support, in addition to
|&)(§) - 1| = 0(¢) as £ - 0,where ¢ denotes Fourier transform of ¢;

(Ag)s;i=1,---,n) and m satisfy max(s; —s; ;)= O(n") and

1<i<n

2™ =0 (n1/3), respectively.
3. Statements of the Results

Now we state the following results of this paper.

Theorem 3.1. Let {g;, F;,1<i<n} be a martingale difference

sequence with sup Elg;|* < % and sup Ele;| > 8 > 0. If conditions (A;)
i i
(Ay) hold, and n''*t,, — 0 as n — «, then
Jnl62 - 02)—L— N(o, &%), (3.1)
where * = Var(eﬂFi_l) <w,i=1 2 -, n.

Theorem 3.2. Assume that conditions (A;) - (A4) hold, {m;, 1 <1 <

n
n} is a measurable random sequence on ﬂ F,_, and {m;,1<i<n}
k=1

and {g;,1<i<n} are as. bounded. If there exists some

ue(l/2+1/q,1), (¢ > 2) such that sup jA |E (¢, s)lds = O(n™"), then
i

i

for sup Elg;| > 8 > 0 and nt'*1t, >0,
l

(B, -p) (R7X)(, - ) / o2 —L .2, (3.2)

Remark 3.1. Since 2

1s unknown, we can not apply the theorem. If
we substitute 6% for 6% in (3.2), then we obtain the following Theorem

3.3. So the result can be applied in large sample hypothesis testing.
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Theorem 3.3. Under the conditions of the Theorem 3.2, we obtain
n T (s ~\ (A A
b - B @) -5) /63 —L— 2@ 3.9

Proof. By Theorem 3.1, we easily obtain 6% — P 5%, Therefore,

Theorem 3.3 follows from Theorem 3.2.

Remark 3.2. When the errors {g;,i =1, ---, n} are ii.d. random

variables, by these theorems, we easily obtain some corresponding results
which are discussed by several authors, such as Qian and Cai [16], Qian
et al. [17] and Chai and Xu [3].

4. Proofs of Theorems

Before the proofs of the theorems, we introduce some preliminary
results. For simplicity, C is a arbitrary positive constant which could take

difference value at each occurrence.

Lemma 4.1 (Antoniads et al. [1]). If condition (As3) holds, then
< Cy, 2"MCy,
1+t —s|)* (1+ 2™t — §|)F

k € N, where C}, is a real constant depending only on k ;

@D |Eo(, s)| and |E,(t, s)| <

for

(I1) SuplEm(t7 S)l = O(zm),

0<s<1
1
(1) sup j |E,(t, s)ds < C.
t 0

Lemma 4.2 (Hu and Hu [10)). If conditions (A;)- (A4) hold, then

w0 2] Bl i) = b7+ 06

sup|g(t) - Zn:( [ | Enlt, skis)a(ty ) = O ~7)+ OG,).
k=1 ° 7k




WAVELET ESTIMATE OF ERROR VARIANCE ... 231

2 me-1/2) 19 o < 3/2,
where Ty =4 Jm .27 a=3/2,
27" a>3/2.

Lemma 4.5. Let {&,, F}', n, k 21} be a martingale difference

n
sequence with E&ik < w. Assume that ZE(&%kl(‘énk‘ > 6)‘F£_1 )—2—0
h=1

n
F!')—2—5 62 hold. Then hz:énk
=1

n
vé >0 as n > » and ZE(@?Lk
h=1

L, N(O, G% )

Proof. See Theorem 1.2 of Kundu et al. [13] or Lemma 1.1 of Hu
[12]. |
Lemma 4.5. Suppose that the k -vector X,, converge to the k -vector X
in probability, and k x k -order random matrix B, converge to the k x k -

order random matrix B in probability. Then
X,B,XI —P2 5 XBXT as n— .
Proof. Let X, = (i, - %) By = (byjn )y, X = (1, -+, %),

B = (b),,,- Then x;, —2—>x;, by, —L—>by;, i, j =1, -+, k. Hence,

we have

k
Zbuxlx] = XBXT. [l
fEs|

k k k
1=1

T _ E p
XanXn = bijnxinxjn >
i=1 j=1

Remark 4.1. Let B, be a real-valued matrix sequence, the

corresponding result was established by Serfling [18].

Lemma 4.6 (Stout [21]). Let {X;,i > 1} be a martingale difference

sequence with EX? =1 and E|X;|> 5 for some &> 0 and all i >1.
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o0
Then, given a sequence of numbers {a;, i > 1}, ZaiXi a.s. converges if
i=1

and only if Zalg < oo,
i=1

Lemma 4.7 (i and Hu, [14]). Under the conditions of the Theorem

3.2, we obtain
Jnlp, - B)—L— N(o, 52V 1)
Proof of Theorem 3.1. Note that

. . ~ et -1 o\ ~
Y—XBn—gn:Y—Xan(I—X(XTX) XT)Y,

we obtain
52 = %?T(I —c)'(1-c,)Y = %?T(I _C,YY, (4.1)
o -1~
where C,, = X( TX) XT Lete=(e, -, ¢,) and § = (I - S). Then
Y =XB+Z+8=Xp+3+e-S(Y-XB)=XB+(g-8p)+e (42

By (4.2), (4.1) and note that X' C, = X!, C,X = X, we obtain
62— 0% =1/ nlpTRT + (g - 2o) +eT )T - C)(p + (g - &0) + &) - o2
=1/ nl(g - &0)" + &7 (I - C) (& - &0)+ o) - o
/e (- ) - o2 [/l - o) (1 - € (e - 80)

+[2/n(g—§0)T(I—Cn)s]é I+ Iy + I (4.3)

Write

n
1 1 A
L=1/neTe-0?-1/ne’C,e = - E (&:L2 - E(8%|Fi_1))— ESTCnS & Il(l) - I£2). (4.4)
i=1
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It is easy to show that &,; =1/vn(e? — E(¢?|F;_;)) is a martingale

difference sequence, and

Zn:E(égim—l):% 3 E((Szz—E(8i2|Fi—1))2|E—1)=%anvar(8?|ﬁ’i—1)=54-(4-5)
i1 = i1

l

By sup E|si|4 < oo, we obtain
13

n

> B2 (0l > 5)F)

i=1

n

ZE((SLZ ~EFL ) 1{e? - 2| Fiy )| > Vo) Filj

1=1

1
n

—2 _50,n—> o, 8 € (0,1]. (4.6)
By Lemma 4.4, we obtain
Jnt® — L No, 51). (4.7)
To complete the proof, we need to prove
«/;I{Q) = (n_3/ 48TX)(n_1)?T)2)_1 (n_3/ 4)?T8)+> 0. (4.8
It is easy to show that (See Hu [11])
(n*l)?T)?)_l P Sy (4.9)
Note that
n AT X = 34T (1-9)X =n ™34T X —n™3/4eTSX =T - Ty. (4.10)

The j-th element of n 34T X is given by
n n n
n_3/4zsixij _ n_3/428ifj(ti)+ n_3/4zsmij S0 70 (411
i=1 i=1 i=1

Let a; = n77/12fj(ti Ec?. Then we obtain
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n n

D af = > nOEfF(t) < n M8 sup Ee.sup £7(1;) - 0.
i=1 i=1 ' l

Thus Zaiz < . Moreover, by Lemma 4.6, we get
1=1

00 n

€ _ €
E a; L2 = E n 7/12fj(ti WEs? - L2 < oo,
i-1 4 Es} i=1 1/Egi

So we obtain that

T ’fl/GZaiSi / /Eglz S N (4.12)
=1

Since m;; and ¢; are independent each other, with En; =0 and

n
Elg;| < o, we have ET1(2) = n_3/4ZEsi - Enj; = 0. Thus
i=1

T®) 2 0 (4.13)
From (4.11)-(4.13), we have that
D

T, —2 0. (4.14)

The j-th element of n3/4:TSX is given by
n n n n
-3/4 -3/4
n Zgizsikxkj =n Zgizsikfj(tk)"‘
=1 k=1 i=1 k=1

n n
n_3/4 Zgizsiknkj = T2(1) - T2(2) (4_15)
=1 k=1

Similar to (4.14), by Lemma 4.1, we get
Ty —2 0. (4.16)

From (4.10), (4.14) and (4.16), we have that
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n34TX P 0 (4.17)

Using Lemma 4.5, the (4.8) follows from (4.9) and (4.17). By (4.4), (4.7)
and (4.8), we obtain

Jnl, —L 5 N(o, &%) (4.18)

Since I - C,, is a symmetry matrix with (I - C,)* = I - C,, and

n

golt;) = Z(g(tj)‘i‘ Sj)J.AAEm(ti’ s)ds,

j=1 J

we have that

I, <1/n(g - g0) (g - &0) = 1/”Z(g(ti)_ g0(t;))

i=1

_—Z(g(t) Zg j m(tl,s)dsJ +— [Z j Em(tl,s)dsJ
11

Jj=1

221 + 21Q). (4.19)

By Lemma 4.2 and n1/4rm — 0, we have that

JnIl) = 0t/ 2°21 )+ 02, ) - 0. (4.20)

n n
Let &, = > &; = Z%SJ’IAEm(ti’ s)ds. Then {¢,, F,, n >1}is a Ly-
AT Fn A4

martingale. In fact, since
2

< supEs? -sup <C2"n7! <.

J

J. E,, (t;,s)ds|-
4j

n
Zj E,, (t;,s)ds
=R
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It is easily seen that g; = %ng‘A,Em(ti’ s)ds 1is a martingale
difference sequence. Hence {¢,, F,,, n > 1}is a Ly - martingale. Thus, by
Lemma 4.3, we have that
n

JnEI®) - %Z

n

U E, ng

n 2

< C+vn - sup Ea? - sup E (I E, (t;, s)dsj
j i “=d\Ja;
j=LN Y

i=1 j=1

< Cvn - sup sup j E, (t;, s)ds
i j Aj

n
[ Enis)as [y
A; ~

< c2mn 12 = cle?ma )P Lo
Hence
nI®) —2 0. (4.21)
From (4.19)-(4.21), we obtain that

Vnl, —2 0. (4.22)

1/2 ~

Let A, = ()N{TX) X7 = (a"ij)dxn' Since C,, is a symmetry matrix

n . .
) . 1 1=
2 _ — 8. =
with C, = C,, we obtain that E ApikQnjr = 8;j _{O It and
k=1
C, = ATA,. Th
= A, A,. Thus

Is =2/n(g - &) -2/ n(g - 80)" Cpe

d n n
:_Z glt) - &0t Z{ nﬁsi][zanﬁ(g(ti)—é’o(ti))]
j=1\i= i=1

—21{) —21®). (4.23)

:lw
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Z[g(t) Zg J- Em(tw s)ds}s __ZZ J-A'Em(ti’ S)ds

=1 j=
= I8 4 1§12, (4.24)
- 1
Let T, = - g(t)—Zg I Em(tl,s)ds g;. Then {I,,, F,, n > 1} is
=1 j=1

a Lo -martingale. In fact, using C, -inequality and Lemma 4.2, we obtain

n

Er?2 giz n- Z{g(t) Zg j m(tl,s)dsJEsL

12

2
< 0.

)~ D 86)] | Bl sk

]:1 J

< sup Esl sup

n
It is easy to see that %(g(ti) - Zg(tj ).[A E, (t;, s)ds}si is a martingale
= ;

difference sequence, so {[,, F,, n > 1} is a Lg-martingale. Thus, by

Lemma 4.2, we have

2
n
nE(Iéll))Z < sup Ee? - sup|g(t;) - Zg(tf)_[A E, (&, s)ds| — 0.
i i = j
That is,
VItV —2 0, (4.25)

n
It is easily seen that {Zsi / Vn, F,,n2 1} is a Ly -martingale, so we
i=1

have that

x/_EI(12)<\/_supJ E,, (t;,s)ds|-

THEH

1#]
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1 n
+ﬁZEsi2J.Aj E,,(t;,s)ds
=1

/2
< C(szn_l)1 -0+ x/;osqp E's;‘-Z - sup,
1 13

J.Aj E, (t;, s)ds

< c2mn M2 = ol )7 Lo
That 1s,
VnIY —2 0. (4.26)

By (4.24)-(4.26), we have that

n1) —2—o0. (4.27)
d n n n
= % Z[ anjiﬁl} (Z anj{g(ti) - Zg(tk )I E,(t;, s)dSD
j=1\i= i=1 k=1 Ap

_%i[ianjigi][ njl(ZSkJ‘ E, (t;, s)dsD ](21 Iézz)‘<4‘28)
] ] =1

Jj=1\i=1

Using C, -inequality and Lemma 4.2, we obtain

n 2 2
(1(21))2 Zliljlfd[z njigi} {Z njz[g(t) Zg(th)_[ Em(tw S)dSJJ

1=1

2
C n o n
gg.n S}lpg(ti)_zg(tk) z’ S)ds (Zanjz z] Zanﬂ
LJ k=1 A i=1 i=1
2
1 9 1 W
< C[nZ L n%iJsup% ZanjigiJ . (4.29)
JoNn\iE

It is easy to show that
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d

n 2
1@ L To oo a T ae--L ver | —2 0. (4.
\/;1 J;s CnS \/;( ns) ( ng) J; lean]zsl ——0.(4.30)

1=
Therefore, by (4.29), (4.30) and n1/4rm — 0, we obtain that
n(Igm))z —P 0. Hence,

IV —2 0. (4.31)

By C, -inequality, we obtain

n 2, n(n 2
< CJn sup(ZskJ.AkEm(ti, s)dsJ Za%ﬁ -%Z{Zanji?’i]

LI\ k=1

<Cn sqp[Zn_lMskJ.A E, (t, s)dsJ Ln [Zanjisi] .(4.32)
k . .

k=1

n
It is easy to prove that T, = Zn_1/48kIA E, (¢, s)ds is a Lg-
k=1 i

martingale, so we obtain

n

n 2 2
nE{kZ; n_1/48k-[AkEm , s)ds} = @ZES%(“‘AkEm , s)ds)

k=1

iJ.A E, (t;, s)ds

k=1 “k

< Cn - sup Ee} ~sup'[ E, (t;, s)ds| -
k k |J A

/2
<C2™p12 2 C(22’"n‘1)1 0. (4.33)
By (4.30)-(4.33), we obtain that

VI — 250 (n > ). (4.34)



240 HONGCHANG HU
By (4.28), (4.31) and (4.34), we obtain
I —2 5 (n - ). (4.35)
By (4.23), (4.27) and (4.35), we obtain
Vnly —2 50 (n - o). (4.36)

Thus, by (4.3), (4.18), (4.22) and (4.36), the proof of Theorem 3.1 is
completed. 0

Proof of Theorem 3.2. The result follows immediately from Lemma
4.7 and Theorem 3.1. 0
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