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Abstract 

In this paper, consider a semiparametric regression model 

( ) ,1, nitgXy ii
T
ii ≤≤ε++β=  

where the error { }niFii ≤≤ε 1,,  is a martingale difference sequence with 

( ) .1
2

−ε=σ ii FVar  We obtain the wavelet estimator of error variance .2σ  

Under general conditions, we investigate asymptotic normality of ,ˆ 2
nσ  and the 

asymptotic chi-square distribution of the quadratic forms in .ˆ nβ  

1. Introduction 

Consider a semiparametric regression model 
( ) ,1, nitgXy ii

T
ii ≤≤ε++β=  (1.1) 
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where iy  is real-valued relating to the observation at β,it  is a d-

dimensional unknown parameter, ( ) dnirXX ×=  is a random carrier 

matrix. ( ) [ ]( )1,0∈ttg  denotes the nonparametric signal, { }it  is a 

deterministic sequence in interval [ ],1,0  and { }niFii ≤ε ,,  is a 
martingale difference sequence. 

Following Speckman [20], denote 

( ) ,1,1, drnitfx iririr ≤≤≤≤η+=  (1.2) 

where ( )⋅rf  is a function in interval [ ] { }1,,1,0 ≥η ii  is a stochastic 

sequence with ( )idii ηη=η ,,1 "  i.i.d., and 

( ) ,,0 VVarE ii =η=η  (1.3) 

where ( ) ( )djVV ij ,,2,1 "==  is a positive definite matrix with d- 

order. Moreover, { }irη  and { }iε  are independent. 

Since the semiparametric regression model contains linear 
components and a nonparmetric component, it is more flexible than the 
usual standard linear models and attractive in some applications. The 
model was first introduced by Engle et al. [8] and has been extensively 
studied. For when the errors are independent and identically distributed 
random variables, Chen [5], Speckman [20], Chen and Shiah [6], Donald 
and Dewey [7], Hamilton and Truong [9], Bianco and Boente [2], Shi and 
Teng [19], Qian and Cai [16], Qian et al. [17] and Chai and Xu [3] used 
various estimation methods (the kernel method, spline method, series 
estimation, local linear estimation, two-stage estimation, robust 
estimation and wavelet estimation) to obtain some estimators of the 
unknown quantities and discussed the asymptotic properties of these 
estimators. 

However, the independence assumption for the errors is not always 
appropriate in applications, especially for sequentially collected economic 
data, which often exhibit evident dependence in the errors. Recently, the 
semiparametric regression model with serially correlated errors has 
attracted increasing attention from statisticians. One case of considerable 
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interest is the model with martingale difference errors. Chen and Cui [4] 
given an example to show the application of the semiparametric model 
with martingale difference errors. Under martingale difference errors, Li 
and Liu [15] showed that the (weighted) least squares estimators of 
parameters were strongly consistent and asymptotic normality. Yan et 
a1. [22] studied consistency of near neighbor estimators. Chen and Cui 
[4] consider the application of the empirical likelihood method to a 
partially linear model with martingale difference errors, and shown that 
the empirical log-likelihood ratio at the true parameter converged to the 
standard Chi-square distribution. Hu and Hu [10] investigated strong 
consistency in Model (1)-(3) by the wavelet method. Li and Hu [14] 
consider the asymptotic normality of the wavelet estimators. Hu [11] 
studied the semiparametric model with martingale difference linear time 
series errors, and obtained the r-th mean consistency and completely 
consistency for the estimators. 

In this paper, using the wavelet method, the semiparametric 
regression model is discussed while the error { }iε  is a martingale 
difference sequence. The organization of this paper is as follows: The 
wavelet estimator of error variance is given in Section 2. Under general 

conditions, the asymptotic distributions of 2ˆ nσ  and the asymptotic Chi-

square distribution of the quadratic forms in nβ̂  are obtained in Section 
3. The main proofs are presented in Section 4. 

2. Estimation Method 

Suppose that there exists a scaling function ( )xφ  in the Schwartz 
space lS  and a multiresolution analysis { }mV  in the concomitant Hilbert 

space ( ),2 RL  with its reproducing kernel ( )stEm ,  given by 

( ) ( ) ( ) ( ).2222,22, 0 ksktstEstE mm

zk

mmmm
m −φ−φ== ∑

∈

 

Let [ ]iii ssA ,1−=  denote intervals that partition [ ]1,0  with ii At ∈  and 
.1 ni ≤≤  The estimate method will be introduced as the following. 
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Firstly, suppose that β  is known, we define estimator of ( )⋅g  by 

( ) ( ) ( ) ( ) ;,,ˆˆ
1

00 dsstEXytgtg m
A

T
ii

n

i i∫∑ β−=β=
=

 

In succession, we define wavelet estimator nβ̂  by minimizing 

( ( )) ;,ˆ 2
0

1
β−β−∑

=
i

T
ii

n

i
tgXy  

Finally, we define linear wavelet estimator of ( )⋅g  by 

( ) ( ) ( ) ( ) ;,ˆˆ,ˆˆ
1

0 dsstEXytgtg m
A

n
T
ii

n

i i∫∑ β−=β=
=

 

Let ( ) ( ) ( ) m
A

ijnnij
T

ndnir ESSSyyYXX
j∫====

×× ,,,,, 1 " ( ,it ) ,dss     

( ) ( ) .~,~ YSIYXSIX −=−=  

Then we obtain that 

( ) ( ),ˆˆ,~~~~ˆ 1 β−==β − XYSgYXXX n
TT

n  

where ( ( ) ( ))Tnn tgtgg ˆ,,ˆˆ 1 "=  is an estimator of vector 

( ( ) ( )) .,,1
T

ntgtgg "=  Thus the wavelet estimator of the error variance 
is defined by 

( ( )) ,ˆˆ1ˆ1ˆ 2

1

2

1

2
in

T
ii

n

i
i

n

i
n tgXynn −β−=ε=σ ∑∑

==

 

where ( ).ˆˆˆ in
T
iii tgXy −β−=ε  

To obtain our results, the following four conditions are sufficient. 

( ) ( ) ( ) α∈⋅⋅ HfgA r,1  (Sobolev space, see Chai and Xu  [3]), for some 
;1,21 dr ≤≤>α  
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( ) ( )⋅gA2  and ( )⋅rf  are Lipschitz functions of order r≤>γ 1,41  
;d≤  

( ) ( )⋅φ3A  belongs to ,lS  which is a Schwartz space for φα≥ .l  is a 
Lipschitz function of order 1 and have compact support, in addition to 
( ) ( )ξ=−ξφ O1ˆ   as ,0→ξ where φ̂  denotes Fourier transform of ;φ  

( ) ( )nisA i ,,14 "=  and m satisfy ( ) ( )1
11

max −
−

≤≤
=− nOss iini

 and 

( ),2 3/1nOm =  respectively. 

3. Statements of the Results 

Now we state the following results of this paper. 

Theorem 3.1. Let { }niFii ≤≤ε 1,,  be a martingale difference 

sequence with ∞<ε 4sup i
i

E  and .0sup >δ≥εi
i

E  If conditions ( )1A  

( )4- A  hold, and  04/1 →τmn  as ,∞→n  then 

( ) ( ),,0ˆ 422 σ →σ−σ �Nn L
n  (3.1) 

where ( ) .,,2,1,1
24 niFVar ii "� =∞<ε=σ −  

Theorem 3.2. Assume that conditions ( ) ( )41 AA −  hold, { ≤≤η ii 1,  

}n  is a measurable random sequence on ,1
1

−
=

k
n

k
F∩  and { }nii ≤≤η 1,  

and { }nii ≤≤ε 1,  are a.s. bounded. If there exists some 

( ),1,121 qu +∈  ( )2>q  such that ( ) ( ),,sup u
m

Ai
nOdsstE

i

−=∫  then 

for δ≥εi
i

Esup  0>  and ,04/1 →τmn  

( ) ( ) ( ) ( ).ˆ~~ˆ 22 dXX L
n

TT
n χ →σβ−ββ−β  (3.2) 

Remark 3.1. Since 2σ  is unknown, we can not apply the theorem. If 

we substitute 2ˆ nσ  for 2σ  in (3.2), then we obtain the following Theorem 
3.3. So the result can be applied in large sample hypothesis testing. 
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Theorem 3.3. Under the conditions of the Theorem 3.2, we obtain 

( ) ( ) ( ) ( ).ˆˆ~~ˆ 22 dXX L
nn

TT
n χ →σβ−ββ−β  (3.3) 

Proof. By Theorem 3.1, we easily obtain .ˆ 22 σ →σ p
n  Therefore, 

Theorem 3.3 follows from Theorem 3.2. 

Remark 3.2. When the errors { }nii ,,1, "=ε  are i.i.d. random 
variables, by these theorems, we easily obtain some corresponding results 
which are discussed by several authors, such as Qian and Cai [16], Qian 
et al. [17] and Chai and Xu [3]. 

4. Proofs of Theorems 

Before the proofs of the theorems, we introduce some preliminary 
results. For simplicity, C is a arbitrary positive constant which could take 
difference value at each occurrence. 

Lemma 4.1 (Antoniads et al. [1]). If condition ( )3A  holds, then 

(I) ( )
( )k

k

st
CstE
−+

≤
1

,0  and ( )
( )km

k
m

m
st

CstE
−+

≤
21
2,  for  

,Nk ∈  where kC  is a real constant depending only on k ; 

(II) ( ) ( );2,sup
10

m
m

s
OstE =

≤≤
 

(III) ( ) .,sup
1

0
CdsstEm

t
≤∫  

Lemma 4.2 (Hu and Hu [10]). If conditions ( ) ( )41 - AA  hold, then 

( ) ( ( ) ) ( ) ( ) ( )mkjm
A

n

k
j

t
OnOtfdsstEtf

k
τ+=− γ−

=
∫∑ ,sup

1
 

( ) ( ( ) ) ( ) ( ) ( ),,sup
1

mkm
A

n

kt
OnOtgdsstEtg

k
τ+=− γ−

=
∫∑  
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where   

( )









>α
=α⋅
<α<

=τ
−

−

−α−

.232
,232
,23212 2/1

m

m

m

m m  

Lemma 4.5. Let { }1,,, ≥ξ knF n
knk  be a martingale difference 

sequence with .2 ∞<ξnkE  Assume that ( ( ) ) 01
2

1
→δ>ξξ −

=
∑ pn

knknk

n

h
FIE  

δ∀  0>  as ∞→n  and ( ) 2
11

2

1
σ →ξ −

=
∑ pn

knk

n

h
FE  hold. Then nk

n

h
ξ∑

=1
 

 → L ( ).,0 2
1σN  

Proof. See Theorem 1.2 of Kundu et al. [13] or Lemma  1.1 of Hu 
[12].                                                                                                                  � 

Lemma 4.5. Suppose that the k -vector nX  converge to the k -vector X 

in probability, and kk ×  -order random matrix nB  converge to the kk × -

order random matrix B in probability. Then 

.∞→ → nasXBXXBX TpT
nnn  

Proof. Let ( ) ( ) ( ),,,,,,, 11 kkkijnnknnn xxXbBxxX "" ===
×

 

( ) .kkijbB
×

=  Then .,,1,,, kjibbxx ij
p

ijni
p

in "= → →  Hence, 

we have 

.
1111

T
jiij

k

j

k

i

p
jninijn

k

j

k

i

T
nnn XBXxxbxxbXBX = →= ∑∑∑∑

====

 � 

Remark 4.1. Let nB  be a real-valued matrix sequence, the 

corresponding result was established by Serfling [18]. 

Lemma 4.6 (Stout [21]). Let { }1, ≥iXi  be a martingale difference 

sequence with 12 =iEX  and δ≥iXE  for some 0>δ  and all .1≥i  
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Then, given a sequence of numbers { } ii
i

i Xaia ∑
∞

=
≥

1
,1,  a.s. converges if 

and only if .2

1
∞<∑

∞

=
i

i
a  

Lemma 4.7 (Li and Hu, [14]). Under the conditions of the Theorem 
3.2, we obtain 

( ) ( ).,0ˆ 12 −σ →β−β VNn L
n  

Proof of Theorem 3.1. Note that 

( ) ,~~~~~ˆ~~ˆˆ 1
YXXXXIXYgXY TT

nnn 





 −=β−=−β−

−
 

we obtain 

( ) ( ) ( ) ,~~1~~1ˆ 2 YCIYnYCICIYn n
T

n
T

n
T

n −=−−=σ  (4.1) 

where ( ) .~~~~ 1 TT
n XXXXC

−
=  Let ( )Tnεε=ε ,,1 "  and ( ) .~ ε−=ε SI  Then 

( ) ( ) .ˆ~~~~~~~
0 ε+−+β=β−−ε++β=ε++β= ggXXYSgXgXY  (4.2) 

By (4.2), (4.1) and note that ,~~,~~ XXCXCX n
T

n
T ==  we obtain 

( )( )( ) ( )( ) 2
00

22 ˆ~ˆ~1ˆ σ−ε+−+β−ε+−+β=σ−σ ggXCIggXn n
TTTT

n  

( )( )( ) ( )( ) 2
00 ˆˆ1 σ−ε+−−ε+−= ggCIggn n

TT  

( )[ ] ( ) ( ) ( )[ ]00
2 ˆˆ11 ggCIggnCIn n

T
n

T −−−+σ−ε−ε=  

( ) ( )[ ] .ˆˆ2 3210 IIICIggn n
T ++=ε−−+  (4.3) 

Write 

( )( ) ( ) ( ).ˆ1111 2
1

1
11

22

1

2
1 IICnFEnCnnI n

T
iii

n

i
n

TT −=εε−ε−ε=εε−σ−εε= −
=
∑ (4.4) 
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It is easy to show that ( ( ))1
221ˆ −ε−ε=ξ iiini FEn  is a martingale 

difference sequence, and 

( ) ( )( ) ( ) .11 4
1

2

1
1

2
1

22

1
1

2

1
σ=ε=






 ε−ε=ξ −

=
−−

=
−

=
∑∑∑ �

ii

n

i
iiii

n

i
ini

n

i
FVarnFFEEnFE (4.5) 

By ,sup 4 ∞<εi
i

E  we obtain 

( )( )1
2

1
−

=

δ>ξξ∑ inini

n

i
FIE  

( )( ) ( )( )





δ>ε−εε−ε= −−−

=
∑ 11

222
1

22

1

1
iiiiiii

n

i
FnFEIFEEn  

( ].1,0,,0 ∈δ∀∞→ → np  (4.6) 

By Lemma 4.4, we obtain 

( ) ( ).,0 41
1 σ → �NIn L  (4.7) 

To complete the proof, we need to prove 

( ) ( ) ( ) ( ) .0~~~~ 4/3114/32
1  →εε= −−−− pTTT XnXXnXnIn  (4.8) 

It is easy to show that (See Hu [11]) 

( ) .~~ 111 −−−  → VXXn pT  (4.9) 

Note that 

( ) .~
21

4/34/34/34/3 TTSXnXnXSInXn TTTT −=ε−ε=−ε=ε −−−−  (4.10) 

The j-th element of Xn Tε− 4/3  is given by 

( ) ( ) ( ).2
1

1
1

1

4/3

1

4/3

1

4/3 TTntfnxn iji

n

i
iji

n

i
iji

n

i
−=ηε+ε=ε ∑∑∑

=

−

=

−

=

−  (4.11) 

Let ( ) .212/7
iiji Etfna ε= −  Then we obtain 
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( ) ( ) .0sup.sup. 226/1226/7

1

2

1
→ε≤ε= −−

==
∑∑ ij

i
i

i
iji

n

i
i

n

i
tfEntfEna  

Thus .2

1
∞<∑

∞

=
i

i
a  Moreover, by Lemma 4.6, we get 

( ) .
2

212/7

121
∞<

ε

ε
⋅ε=

ε

ε −

=

∞

=
∑∑

i

i
iij

n

ii

i
i

i E
Etfn

E
a  

So we obtain that 

( ) .02

1

6/11
1  →εε= ∑

∞

=

− p
iii

i
EanT  (4.12) 

Since ijη  and iε  are independent each other, with 0=ηijE  and 

,∞<εiE  we have ( ) .0
1

4/32
1 =η⋅ε= ∑

=

−
iji

n

i
EEnET  Thus 

( ) .02
1  → pT  (4.13) 

From (4.11)-(4.13), we have that 

.01  → pT  (4.14) 

The j-th element of SXn Tε− 4/3  is given by 

( ) +ε=ε ∑∑∑∑
==

−

==

−
kjik

n

k
i

n

i
kjik

n

k
i

n

i
tfSnxSn

11

4/3

11

4/3  

4/3−n ( ) ( ).2
2

1
2

11
TTS kjik

n

k
i

n

i
−=ηε ∑∑

==

 (4.15) 

Similar to (4.14), by Lemma 4.1, we get 

.02  → pT  (4.16) 

From (4.10), (4.14) and (4.16), we have that 
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.0~4/3  →ε− pT Xn  (4.17) 

Using Lemma 4.5, the (4.8) follows from (4.9) and (4.17). By (4.4), (4.7) 
and (4.8), we obtain 

( ).,0 4
1 σ → �NIn L  (4.18) 

Since nCI −  is a symmetry matrix with ( ) ,2
nn CICI −=−  and 

( ) ( )( ) ( ) ,,ˆ
1

0 dsstEtgtg im
A

jj

n

j
i

j∫∑ ε+=
=

 

we have that 

( ) ( ) ( ) ( )( )20
1

002 ˆ1ˆˆ1 ii

n

i

T tgtgnggggnI −=−−≤ ∑
=

 

( ) ( ) ( ) ( )
2

11

2

11
,2,2














ε+













−≤ ∫∑∑∫∑∑

====

dsstEndsstEtgtgn im
A

j

n

j

n

i
im

A
j

n

j
i

n

i jj

 

( ) ( ).22ˆ 2
2

1
2 II +=  (4.19) 

By Lemma 4.2 and ,04/1 →τmn  we have that 

( ) ( ) ( ) .0222/11
2 →τ+= γ−

mnOnOIn  (4.20) 

Let ( ) .,1
11

dsstE
n imAj

n

j
j

n

j
n

j∫∑∑ ε=ε=ξ
==

�  Then { }1,, ≥ξ nFnn is a 2L -

martingale. In fact, since 

( ) ( )
2

2

1

2

1

2 ,,1








ε≤













ε=ξ ∫∑∫∑

==

dsstEEdsstE
n

EE im
A

j

n

j
im

A
j

n

j
n

jj
 

( ) ( ) .2,,supsup 1

1

2 ∞<≤⋅⋅ε≤ −

=
∫∑∫ nCdsstEdsstEE m

im
A

n

j
im

Aj
j

j jj
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It is easily seen that ( )dsstE
n imAjj

j
,1

∫ε=ε
�  is a martingale 

difference sequence. Hence { }1,, ≥ξ nFnn is a -2L martingale. Thus, by 
Lemma 4.3, we have that 

( ) ( ) 2
2

11

2
2 ,1

jim
A

n

j

n

i
EdsstE

n
EIn

j
ε








= ∫∑∑

==

 

( )
2

1

2 ,supsup 







⋅ε⋅≤ ∫∑

=

dsstEEnC im
A

n

ji
j

j j
 

( ) ( )dsstEdsstEnC im
A

n

j
im

Aji jj
,,supsup

1
∫∑∫

=

⋅⋅≤  

( ) .022
2/1122/1 →=≤ −− nCnC mm  

Hence 

( ) .02
2  → pIn  (4.21) 

From (4.19)-(4.21), we obtain that 

.02  → pIn  (4.22) 

Let ( ) ( ) .~~~ 2/1
ndnij

TT
n aXXXA

×

−
==  Since nC  is a symmetry matrix 

with ,2
nn CC =  we obtain that 





≠
=

=δ=∑
=

,
0
1

1
ji
ji

aa ijnjknik

n

k
 and 

.n
T
nn AAC =  Thus 

( ) ( ) ε−−ε−= n
TT CggnggnI 003 ˆ2ˆ2  

( ) ( )( ) ( ) ( )( )












−













ε−ε−= ∑∑∑∑

====
iinji

n

i
inji

n

i

d

j
iii

n

i
tgtgaantgtgn 0

111
0

1
ˆ2ˆ2  

( ) ( ).22 2
3

1
3 II −=  (4.23) 
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( ) ( ) ( ) ( ) ( )dsstEndsstEtgtgnI im
A

ji

n

j

n

i
iim

A
j

n

j
i

n

i jj
,1,1

1111

1
3 ∫∑∑∫∑∑ εε−ε













−=

====

 

( ) ( ).12
3

11
3 II +=  (4.24) 

Let ( ) ( ) ( ) .,1
11

iimAj
n

j
i

n

i
n dsstEtgtgn j

ε









−=Γ ∫∑∑

==
 Then { }1,, ≥Γ nFnn  is 

a 2L -martingale. In fact, using rC -inequality and Lemma 4.2, we obtain 

( ) ( ) ( ) 2

11
2

2 ,1
iim

A
j

n

j
i

n

i
n EdsstEtgtgn

n
E

j
ε













−⋅⋅≤Γ ∫∑∑

==

 

( ) ( ) ( ) .,supsup
2

1

2 ∞<−⋅ε≤ ∫∑
=

dsstEtgtgE im
A

j

n

j
i

i
i

i j
 

It is easy to see that ( ) ( ) ( ) iimAj
n

j
i dsstEtgtgn j

ε









− ∫∑

=
,1

1
 is a martingale 

difference sequence, so { }1,, ≥Γ nFnn  is a 2L -martingale. Thus, by 

Lemma 4.2, we have 

( )( ) ( ) ( ) ( ) .0,supsup
2

1

2211
3 →−⋅ε≤ ∫∑

=

dsstEtgtgEInE im
A

j

n

j
i

i
i

i j
 

That is, 

( ) .011
3  → pIn  (4.25) 

It is easily seen that 












≥ε∑
=

1,,
1

nFn ni
n

i
 is a 2L -martingale, so we 

have that 

( ) ( ) 






 εε
⋅≤ ∑∫
≠

nn
EdsstEnEIn ji

ji
im

Aji j
,sup

,

12
3  
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( )dsstEE
n im

A
i

n

i j
,1 2

1
∫∑ ε+

=

 

( ) ( )dsstEEnnC im
Ai

i
i

m

j
,supsup02 22/112 ∫⋅ε⋅+⋅≤ −  

( ) .022
2/1122/1 →=≤ −− nCnC mm  

That is, 

( ) .012
3  → pIn  (4.26) 

By (4.24)-(4.26), we have that 

( ) .01
3  → pIn  (4.27) 

( ) ( ) ( ) ( ) 


























−













ε= ∫∑∑∑∑

====

dsstEtgtgaanI im
A

k

n

k
inji

n

i
inji

n

i

d

j k
,1

1111

2
3  

( ) ( ) ( ).,1 22
3

21
3

1111
IIdsstEaan im

A
k

n

k
nji

n

i
inji

n

i

d

j k
−=



























ε













ε− ∫∑∑∑∑

====

(4.28) 

Using rC -inequality and Lemma 4.2, we obtain 
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It is easy to show that 
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Therefore, by (4.29), (4.30) and ,04/1 →τmn  we obtain that 
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By rC -inequality, we obtain 
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It is easy to prove that ( )dsstEn imAk
n

k
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martingale, so we obtain 
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By (4.30)-(4.33), we obtain that 

( ) ( ).022
3 ∞→ → nIn p  (4.34) 
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By (4.28), (4.31) and (4.34), we obtain 

( ) ( ).2
3 ∞→ → nIn p  (4.35) 

By (4.23), (4.27) and (4.35), we obtain 

( ).03 ∞→ → nIn p  (4.36) 

Thus, by (4.3), (4.18), (4.22) and (4.36), the proof of Theorem 3.1 is 
completed.                                                                                                       � 

Proof of Theorem 3.2. The result follows immediately from Lemma 
4.7 and Theorem 3.1.                                                                                      � 
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